Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein
نویسندگان
چکیده
The hemispheric, bi-layered optic cup forms from an oval optic vesicle during early vertebrate eye development through major morphological transformations. The overall basal surface, facing the developing lens, is increasing, while, at the same time, the space basally occupied by individual cells is decreasing. This cannot be explained by the classical view of eye development. Using zebrafish (Danio rerio) as a model, we show that the lens-averted epithelium functions as a reservoir that contributes to the growing neuroretina through epithelial flow around the distal rims of the optic cup. We propose that this flow couples morphogenesis and retinal determination. Our 4D data indicate that future stem cells flow from their origin in the lens-averted domain of the optic vesicle to their destination in the ciliary marginal zone. BMP-mediated inhibition of the flow results in ectopic neuroretina in the RPE domain. Ultimately the ventral fissure fails to close resulting in coloboma.
منابع مشابه
ojoplano-mediated basal constriction is essential for optic cup morphogenesis.
Although the vertebrate retina is a well-studied paradigm for organogenesis, the morphogenetic mechanisms that carve the architecture of the vertebrate optic cup remain largely unknown. Understanding how the hemispheric shape of an eye is formed requires addressing the fundamental problem of how individual cell behaviour is coordinated to direct epithelial morphogenesis. Here, we analyze the ro...
متن کاملAn eye on eye development
The vertebrate eye is composed of both surface ectodermal and neuroectodermal derivatives that evaginate laterally from an epithelial anlage of the forming diencephalon. The retina is composed of a limited number of neuronal and non-neuronal cell types and is seen as a model for the brain with reduced complexity. The eye develops in a stereotypic manner building on evolutionarily conserved mole...
متن کاملCoordinated Morphogenetic Mechanisms Shape the Vertebrate Eye
The molecular bases of vertebrate eye formation have been extensively investigated during the past 20 years. This has resulted in the definition of the backbone of the gene regulatory networks controlling the different steps of eye development and has further highlighted a substantial conservation of these networks among vertebrates. Yet, the precise morphogenetic events allowing the formation ...
متن کاملThe role of bone morphogenetic proteins in the differentiation of the ventral optic cup.
The ventral region of the chick embryo optic cup undergoes a complex process of differentiation leading to the formation of four different structures: the neural retina, the retinal pigment epithelium (RPE), the optic disk/optic stalk, and the pecten oculi. Signaling molecules such as retinoic acid and sonic hedgehog have been implicated in the regulation of these phenomena. We have now investi...
متن کاملBone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo.
In vertebrates, the neuroepithelium of the optic vesicle is initially multipotential, co-expressing a number of transcription factors that are involved in retinal pigment epithelium (RPE) and neural retina (NR) development. Subsequently, extrinsic signals emanating from the surrounding tissues induce the separation of the optic vesicle into three domains: the optic stalk/nerve, the NR and the R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015